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Abstract

Motivated by a problem involving wave propagation through viscoelastic biotissue,
we present a theoretical framework for treating hysteresis as multiscale phenomena
which must be averaged across distributions of internal variables. The resulting sys-
tems entail probability measure dependent partial differential equations for which we
establish well-posedness in a framework that leads readily to computationally useful
approximations.
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1 Introduction

At the heart of modern day sciences (especially the computational sciences) of materials,
biology, etc., is the challenge of effectively using the explosion of available information at
micro (genomic, atomic, molecular, nano, etc.) levels to develop more and more accurate
biologically and physically based system response (macro level) models for use in prediction,
control, design, and simple organism/structure simulations. A number of fundamental issues
(e.g., how to model uncertainty/variability in heterogeneous materials) in multiscale model-
ing and control are important in addressing this challenge. In this presentation we discuss
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some of these issues in the context of internal dynamics (molecular level) in system response
models (organism level). More precisely, we offer a probabilistic based internal strain variable
framework to treat nonlinear hysteresis arising in propagation of shear waves in biotissues.
The usual models for such problems involve integro-partial differential equations which are
most often phenomenological in nature as well as being computationally challenging. Our
approach is founded on the belief that hysteresis is actually a manifestation of the presence
of multiple scales in a physical or biological system that is frequently modeled (and masked)
with a phenomenological representation such as an hysteresis integral for the macroscopic
stress-strain constitutive law ( e.g., for models of viscoelastic damping via hysteretic integrals
versus internal variable representations, see [13] and the references therein). The approach
we present embodies a multiscale treatment of hysteresis as resulting from a continuum of
microscopic or molecular level internal strain mechanisms averaged (with respect to a mate-
rial dependent probability distribution) across populations of molecules. Such an approach
using nonlinear stick-slip molecular reptation models for both tensile and shear deforma-
tions has recently [11],[12] been developed and successfully used in computational efforts
with composite rubbers. The probabilistic framework we present here has its origins in work
on distributed growth rates for marine (mosquitofish) populations in size-structured models
as developed in [1],[5],[6],[7],[8]. We develop here for the first time a theoretical framework
for molecular based strain models which readily leads to efficient computational methods
that offer an alternative to the computationally intensive phenomenological viscoelastic soft
tissue kernels proposed by Fung and his colleagues. In [22], Fung lays the foundations for the
essentials of polymer biomaterials such as elastin, fibers, collagen, etc., which experimentally
manifest classical hysteretic behavior in tension and shear (see p. 261, [22]). He furthermore
cogently argues the essential nonlinear nature of these materials. He also explains the need
for continuous spectrum models (e.g., a continuum of relaxation parameters ) due to the
strain rate independence of the stress-strain law ([22] p. 281-287) over several decades of
frequencies (see also [21], [25], [26], [28]). This led to the quasi-linear Fung kernel ( see (2.6)
below) in the context of Boltzman type model (2.5) constitutive laws. The formulation we
give here also provides continuous spectrum models, although we subsequently report on
calculations in [2] with finite spectrum approximate models (Section 6 below). The com-
putational results suggest that such models will often suffice to describe well the type of
deformations arising in the wave propagation problems motivating our developments in this
paper.

Our motivating problem arose in joint collaborations with scientists and engineers at
MedAcoustics, Inc., as part of the Industrial Applied Mathematics Program at N.C. State
University ( see http://www.ncsu.edu/crsc/ ). We summarize briefly here the salient points
of this problem, while referring the reader to [2] and [14] for more details. Turbulent blood
flow due to arterial stenosis in partially occluded arteries produces normal forces on arterial
walls. This results in vibrations in the surrounding body tissue which are transmitted to
body surfaces in two forms: compressional waves and shear waves. The shear waves are at
low frequencies ( ≤ 2kHz ) with low propagation speed and attenuation. Devices involving
multiple arrays of piezoceramic sensors were developed at MedAcoustics, with the goal of
measuring shear wave propagation at the surface of the chest. The resulting signals are then
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processed to determine the location and extent of the stenosis. A part of this overall detection
and diagnostic problem is the focus of our efforts: modeling of the shear wave propagation
through a heterogeneous chest cavity. The cavity is composed of soft body tissues (lung,
muscular and connective tissue) as well as bone. Here we consider shear wave propagation
through a viscoelastic heterogeneous medium. At MedAcoustics, early experiments and data
collection were carried out on cylindrical shaped mold of tissue-like synthetic gel as depicted
schematically in Figure 1. The cylinder of gel surrounded a tube in which source disturbances
simulating disrupted flows were produced. Thus the tube with disturbances mimicked an
artery with stenosis. Shear waves were measured with sensor arrays mounted on the gel outer
surface. Subsequent experiments involved data collection on pigs (who, unfortunately for
them, have cylindrical-like chest geometries!!). In [2], the authors developed and used a one-
dimensional (axial symmetry was assumed) homogeneous medium model for computations
and analysis. Here we consider an extension of that model which allows for “molecular” level
heterogeneity in the tissue (gel), while retaining the overall geometry and axial symmetry.
An inner radius R1 and outer radius R2 for the gel is assumed, with the gel initially at rest.
The outer surface of the gel is a free surface.
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Acoustic disturbance

Tube
Gel mold Sensor array

R

Figure 1: Cylindrical model geometry with artificial “stenosis” and piezo sensors

2 Problem formulation

In [2] and [14] the following one-dimensional model (see Figure 1) is introduced to describe
the propagation of shear waves in soft tissue

ρ
∂2u

∂t2
− ∂

∂x
σ(t, x) = F (t, x), R1 < x < R2,
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where ρ is the mass density, u is the Cartesian shear displacement, σ is the shear stress and
F represents a body forcing term. We assume that at the inner or left boundary, (x = R1),
we have a pure shear shearing force, while the outer or right boundary, (x = R2), is a free
surface

σ(t, R1) = f(t), and σ(t, R2) = 0.

The initial conditions are

u(0, x) = u0(x), and ut(0, x) = u1(x), R1 < x < R2.

To complete the model one needs to find an adequate constitutive relationship that relates
the shear stress, σ, and strain, ε = ux(t, x), in soft tissue (arteries, muscle, skin, lung, etc.,
. . . ). In [2] an internal strain variable model is considered in the following form

σ(t, x) = CDε̇(t, x) +
N∑

j=1

εj(t, x), (2.1)

with

dεj(t)

dt
= − 1

τj

εj(t) + Cj
d

dt
σe(ux(t)) (2.2)

εj(0, x) = 0, j = 1, . . . N, (2.3)

where σe is the elastic response function defined in Fung ([22], §7) and given as

σe(ux) = γ + βeαux . (2.4)

On the other hand, Fung proposes the constitutive relationship

σ(t) =
∫ t

0
G(t− s)

dσe(ux)

ds
ds, (2.5)

where G(t) is the reduced relaxation function given in the form

G(t) =
{
1 + C[E1(

t

τ2

)− E1(
t

τ1

)]
}

[1 + c ln(
τ2

τ1

)]−1. (2.6)

Here E1(z) =
∫∞
z

e−t

t
dt, C represents the degree to which viscous effects are present, and τ1

and τ2 represent the fast and slow viscous time phenomena. We note that the internal strain
variable formulation (2.1)-(2.3) is equivalent to the constitutive relationship proposed by
Fung if one considers an approximation of the relaxation function G by a sum of exponential
terms. Various internal strain variable models are investigated in [2] and a good agreement
is demonstrated between the two internal strain variable model (σ = ε1 + ε2) and undamped
simulated data based on the Fung kernel G. We also remark that theoretical well-posedness
results for the one strain variable model (which can be readily extended to treat finite multiple
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strain variables) are given in [14]. We further note that the derivations in [11], [12], and the
references therein yield a molecular based foundation for internal variable models such as
(2.2)-(2.3). These are generalizations of the linear stick-slip models of Doi and Edwards [20]
and Johnson and Stacer [23].

As explained in the Introduction, here we are concerned with a generalization of the
internal strain variable formulation. Fung’s proposed model provides a continuous spectrum
of relaxation times in contrast with the finite multiple internal strain model. In the latter,
the material is assumed to have discrete relaxation rate constants, τj, that correspond to
a discrete hysteresis spectrum. As we have noted, Fung argues that this is incompatible
with the observation that the hysteresis loop is independent of the strain rate within several
decades of the rate variation for many biological soft tissues. Here we propose to realize a
continuous spectrum of relaxation times in the form

σ(t, x; P ) = CDε̇(t) +
∫ t

0
G(t− s, P )

d

ds
σe(ux(s))ds, (2.7)

with

G(t, P ) =
∫

T
g(t, τ)dP (τ), (2.8)

where T = [τ1, τ2] ⊂ (0,∞), P is a probability density function on T , and g is a continuous

function of relaxation times τ on T . We note that the case g(t, τ) = e−
1
τ

t corresponds to a
continuum of internal strain variable models “weighted” by the probability density function
P. This can be seen readily by applying the variation of constants formula in (2.2)-(2.3)
(with Cj = 1, j = 1, . . . , N)

εj(t; τj) =
∫ t

0
e
− 1

τj
(t−s) d

ds
σe(ux(s))ds,

σ(t, x; P ) = CDu̇x(t) +
∫

T

∫ t

0
e
− 1

τj
(t−s) d

ds
σe(ux(s))ds dP (τ),

(and this can be generalized using a product measure on T × C to include a continuum of
Cj-s). In the next section we present existence-uniqueness results for the generalized model
with constitutive relationship (2.7)-(2.8).

3 Existence and uniqueness of weak solutions

Motivated by the weak or variational form of the model derived in the previous section we
consider the abstract system

utt − ∂

∂x
σ(t, x; P ) = F in V ∗ (3.1)

u(0, x) = u0 ∈ V = H1(R1, R2) (3.2)

ut(0, x) = u1 ∈ H = L2(R1, R2) (3.3)
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with boundary conditions

σ(t, R1; P ) = f(t) (3.4)

σ(t, R2; P ) = 0, (3.5)

where the shear stress σ is given as

σ(t, x; P ) = CDu̇x(t, x) +
∫ t

0
G(t− s, P )

d

ds
σe(ux(s, x))ds, (3.6)

with

G(t, P ) =
∫

T
g(t, τ)dP (τ), (3.7)

and P is a probability density function on T . We will denote the norm and inner product in H
by ‖ · ‖ and 〈·, ·〉, while all other norms and inner products will be appropriately labeled. We
note that ‖v‖2

V = ‖v‖2 +‖vx‖2, and that V is compactly embedded in H with V ↪→ H ↪→ V ∗

forming a Gelfand triple [29].
We make the following assumptions

(A1) The forcing term F satisfies F ∈ L2(0, T ; V ∗).

(A2) The inner boundary condition satisfies f ∈ L2(0, T ).

(A3) The elastic response function σe satisfies the following local Lipschitz condition

‖σe(u)− σe(v)‖ ≤ LBr‖u− v‖

for some positive constant LBr and for all u, v ∈ BH(0, r), the ball in H centered at 0
of radius r.

(A4) There exist positive constants C1 and C2 such that

‖σe(u)‖ ≤ C1‖u‖+ C2

for every u ∈ H.

We remark that these are the same assumptions as those of [14]. In addition, we make
the following assumption on the relaxation function G(t, P ) =

∫
T g(t− s, τ)dP (τ).

(A5) The function g is continuous in τ on T = [τ1, τ2] ⊂ (0,∞), g is differentiable with
respect to t on IR+, and there exist constants C3 and C4 such that |g(t, τ)| ≤ C3 and
|ġ(t, τ)| ≤ C4 for all t ∈ IR+ and all τ ∈ T .

We note that g(t, τ) = e−
1
τ

t, which corresponds to a continuum of internal strain variable
models, satisfies this latter condition.

We define weak solutions for the system (3.1)-(3.7) in the following way.
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Definition 3.1 Let LT = {w : [0, T ] → H, w ∈ CW (0, T ; V ) ∩ L2(0, T ; V ) and wt ∈
CW (0, T ; H)∩L2(0, T ; V )}. We say that u ∈ LT is a weak solution of the system (3.1)-(3.7)
if it satisfies

∫ t

0
[−〈us(s), ηs(s)〉+ CD〈usx(s), ηx(s)〉+ 〈

∫ s

0
G(s− ν, P )

d

ds
σe(ux(s))dν, ηx(s)〉]ds

+〈ut(t), η(t)〉 − 〈u1, η(0)〉 =
∫ t

0
[〈F (s), η(s)〉V ∗,V − f(s)η(s,R1)]ds

for any t ∈ [0, T ] and η ∈ LT with initial conditions u0 ∈ V and u1 ∈ H.

As in [14] we note that this notion of the weak solution for system (3.1)-(3.7) agrees with
the usual one in that it yields utt ∈ L2(0, T ; V ∗) with equation (3.1) holding in the sense of
L2(0, T ; V ∗).

Our first result is that the system (3.1)-(3.7) has a unique weak solution.

Theorem 3.1 Under assumptions (A1)-(A5) the system (3.1)-(3.7) has a unique global
weak solution on any finite interval [0, T ].

Proof: Our arguments to establish this statement essentially follow those of [14]. Thus we
present only a short outline and point out the similarities between the one internal variable
model of [14] and its generalization considered here. First we note that the constitutive
relationship σ = CDu̇x + ε1 that was used in [14] leads to

σ(t) = CDu̇x(t) +
∫ t

0
e−

1
τ
(t−s) d

ds
σe(ux(s))ds

= CDu̇x(t) + σe(ux(t))− e−
1
τ

tσe(u0x)−
∫ t

0

d

ds
(e−

1
τ
(t−s))σe(ux(s))ds,

while here we propose

σ(t) = CDu̇x(t) +
∫ t

0
G(t− s, P )

d

ds
σe(ux(s))ds

= CDu̇x(t) + G(0, P )σe(ux(t))−G(t, P )σe(u0x) +
∫ t

0
Ġ(t− s, P )σe(ux(s))ds,

with
G(t, P ) =

∫

T
g(t, τ)dP (τ).

Thus as long as G(t, P ) has the properties that were used in [14] in connection with the
exponential kernel, we can essentially repeat all the arguments there and can arrive at the
desired conclusion. We remark that assumption (A5) guarantees this analogy between the
two problems. Hence we can proceed as in [14] and as a first step establish the local existence
of weak solutions under the assumptions (A1)-(A3) and (A5). To this end we define the
radial retraction P1 from H onto BH(u0x, 1) and let σ̂e = σe(P1u), for u ∈ H. We note that
σ̂e satisfies a global Lipschitz property

‖σ̂e(u)− σ̂e(v)‖ ≤ L‖u− v‖ for all u, v ∈ H,
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and a boundedness property

‖σ̂e(u)‖ ≤ C̃1‖u‖+ C̃2

for all u ∈ H with positive constants C̃1 and C̃2.
Next, we let {ψi}∞i=1 be any linearly independent total subset of V, and for any m, m =

1, . . ., we form V m = span{ψ1, . . . , ψm}. We choose sequences {um
0 } and {um

1 } with um
i in

V m, i = 0, 1, such that um
0 → u0 in V and um

1 → u1 in H as m →∞. We define the Galerkin
approximation

um(t) =
m∑

k=1

am
k (t)ψk

as the unique solution of the m-dimensional integro-differential system

〈um
tt , ψj〉V ∗,V + CD〈um

tx, ψjx〉+ 〈
∫ t

0
G(t− s, P )

d

ds
σ̂e(u

m
x (s))ds, ψjx〉

= 〈F (t), ψj〉V ∗,V − f(t)ψj(R1) (3.8)

for j = 1, . . . , m on the interval [0, T ], for some T > 0. Now we can use the same techniques
as in [14] to establish an a priori estimate

‖um
t (t)‖2 + ‖um

x (t)‖2 + CD

∫ t

0
‖um

sx(s)‖2ds ≤ K, t ∈ [0, T ], (3.9)

where K = K(u0, u1, f, F, CD, T, σ̂e, g, P ) and is independent of m. Thus we can conclude
that there exists a function u ∈ L2(0, T ; V ) such that

um ⇀ u weakly in L2(0, T ; V )

and
um

t ⇀ ut weakly in L2(0, T ; V ).

The following additional convergences that play a crucial role in the proof can also be es-
tablished by the same methods as those used in [10, 14] (Ascoli-Arzela Theorem, Aubin’s
lemma).

(R1) um(t) ⇀ u(t) weakly in V uniformly in t ∈ [0, T ], i.e., um → u in CW (0, T ; V )).

(R2) um
t (t) ⇀ ut(t) weakly in H uniformly in t ∈ [0, T ], i.e., um

t → ut in CW (0, T ; H)).

(R3) um
t → ut in L2(0, T ; H).

(R4) There exists a function h ∈ L2(0, T ; H) such that

∫ t

0
G(t− s)σ̂e(ux(s))ds ⇀ h

weakly in L2(0, T ; H).
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We remark that these convergences also hold on any subinterval of [0, T ]. Now we verify that
u is a weak solution of (3.1)-(3.7) with σ̂e instead of σe. First we define the class of functions
BM = {η ∈ LT | η(t) =

∑M
k=1 ck(t)ψk, ck ∈ C1[0, T ]}, and note that B = ∪∞M=1BM is dense

in LT . Now we multiply (3.8) by ck(t), sum from 1 to M and integrate over (0, t) to obtain
that for all η ∈ BM , m ≥ M

∫ t

0
[〈um

ss(s), η(s)〉V ∗,V + CD〈um
sx(s), ηx(s)〉+ 〈

∫ s

0
G(s− ν, P )σ̂e(u

m
x (ν))dν, ηx(s)〉]ds

=
∫ t

0
〈F (s), η(s)〉V ∗,V − f(s)η(s,R1)ds.

We integrate the first term by parts and then take the limit as m →∞ using the convergences
(R1)-(R4) to arrive at

∫ t

0
[−〈us(s), ηs(s)〉+ CD〈usx(s), ηx(s)〉+ 〈h(s), ηx(s)〉]ds

+〈ut(t), η(t)〉 − 〈u1, η(0)〉
=

∫ t

0
〈F (s), η(s)〉V ∗,V − f(s)η(s,R1)ds

for all η ∈ LT . Thus we can claim that u is a weak solution of (3.1)-(3.7) (with σe replaced
by σ̂e) if we show that

∫ t

0
〈h(s), ηx(s)〉ds =

∫ t

0
〈
∫ s

0
G(s− ν, P )σ̂e(ux(ν))dν, ηx(s)〉ds

for all η ∈ LT . This is achieved by establishing the strong convergence um
x (t) → ux(t) in H as

m →∞, again using the same arguments as in [14]. Uniqueness of weak solutions is proved
the standard way.

Now we claim that the original system (3.1)-(3.7) with σe has a unique local weak solution.
Since ux is continuous in t ([19], p.555) it follows that there exists t∗, 0 < t∗ ≤ T such that

‖ux(t)− u0x‖ ≤ 1

for all t ∈ [0, t∗]. Therefore

σe(ux(t)) = σ̂e(ux(t)), t ∈ [0, t∗],

i.e., u is a weak solution of (3.1)-(3.7) on [0, t∗].
Finally, we can conclude the proof of Theorem 3.1 by showing that this local solution actu-

ally exists on any arbitrary interval [0, T ]. This is accomplished by utilizing the boundedness
assumption (A4) to obtain an a priori estimate similar to (3.9) for Galerkin approximations
involving σe instead of σ̂e, and then argue that ux(t) is pointwise bounded. The local Lips-
chitz condition (A3) can then be applied and similar steps to those above can be repeated
to show that u is the unique weak solution of (3.1)-(3.7).
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4 Continuous dependence

In this section we show that the unique weak solution of system (3.1)-(3.7) depends continu-
ously on the “distributed relaxation times”. This result is important for our ultimate goal of
identifying stenosis, i.e., in considerations involving the inverse problem. To this end, we first
introduce a topology on the probability distribution functions (PDFs) P ∈ P([τ1, τ2]), where
P([τ1, τ2]) is the set of all PDFs on the Borel subsets of [τ1, τ2]. A convenient topology that
will also be useful in treating the general inverse problem is given by the Prohorov metric
[3, 4, 15]. For the sake of completeness we give the basic definitions and results concerning
this metric here.

Suppose that (Q, d) is a complete metric space, and for any closed subset F ⊂ Q and
ε > 0 define the set

F ε = {q ∈ Q : d(q̃, q) < ε, q̃ ∈ F}.
Then the Prohorov metric ρ : P(Q)× P(Q) → IR+ is defined by

ρ(P1, P2) ≡ inf{ε > 0 : P1[F ] ≤ P2[F
ε] + ε, F closed, F ⊂ Q}.

It is well-known that

(1) (P(Q), ρ) is a complete metric space, and

(2) if Q is compact then (P(Q), ρ) is a compact metric space.

The crucial properties of this metric in connection with our continuous dependence and
inverse problems are summarized in the following theorem ([15]).

Theorem 4.1 Given Pk, P ∈ P(Q), the following convergence statements are equivalent

(a) ρ(Pk, P ) → 0;

(b)
∫
Q fdPk(q) →

∫
Q fdP (q) for all bounded, uniformly continuous functions f : Q → IR;

(c) Pk[A] → P [A] for all Borel sets A ⊂ Q with P [∂A] = 0;

We can now proceed to show that the weak solution of system (3.1)-(3.7) depends con-
tinuously on the probability distribution function P in the Prohorov metric topology.

Theorem 4.2 Assume that assumptions (A1)-(A5) hold. If Pk → P in the Prohorov metric
ρ, then uk → u in L2(0, T ; V ) and ukt → ut in L2(0, T ; V ), where uk are the weak solutions
corresponding to probability density functions Pk and u is the weak solution corresponding to
P.

Proof: We first note that if Pk → P and G is defined as G(t, P ) =
∫
T g(t, τ)dP (τ), where g

satisfies (A5), then by Theorem 4.1. we have that

G(t, Pk) → G(t, P ) for every t ≥ 0, (4.1)

Ġ(t, Pk) → Ġ(t, P ) for every t ≥ 0. (4.2)
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We also remark that (A5) implies that

|G(t, Pk)| ≤ C3, for every k, k = 1, . . . (4.3)

|Ġ(t, Pk)| ≤ C4, for every k, k = 1, . . . (4.4)

Now we have that

σ(t, x; P ) = CDε̇ +
∫ t

0
G(t− s)

d

ds
(σe(ux(s)))ds = CDε̇ + E1(t, ε; P ),

where ε = ux, and by the above remarks E1(t, ε; Pk) → E1(t, ε, P ) for a fixed ε, and any t ≥ 0
whenever Pk → P in the Prohorov metric. Let um

k , um denote the Galerkin approximations
corresponding to the weak solutions uk and u of (3.1)-(3.7) with respective PDFs Pk and P.
We note that the initial conditions do not depend on the PDFs Pk or P. Thus we have

〈um
tt , ψj〉V ∗,V + CD〈um

tx, ψjx〉+ 〈E1(u
m
x ; P ), ψjx〉 = 〈F (t), ψj〉V ∗,V − f(t)ψj(R1)

and

〈um
ktt, ψj〉V ∗,V + CD〈um

ktx, ψjx〉+ 〈E1(u
m
kx; P ), ψjx〉 = 〈F (t), ψj〉V ∗,V − f(t)ψj(R1),

which yields

〈um
ktt − um

tt , ψj〉V ∗,V + CD〈um
ktx − um

tx, ψjx〉+ 〈E1(u
m
kx; P )− E1(u

m
x ; P ), ψjx〉 = 0. (4.5)

Let ∆Em
1 = E1(u

m
kx; P ) − E1(u

m
x ; P ). We remark that by the above observation on the

boundedness of G and Ġ we have that the same a priori estimates can be shown to be
valid for both the Galerkin approximations {um

k } and {um}, i.e., there exists a constant K
independent of m and k such that

‖um
kt(t)‖2 + ‖um

kx(t)‖2 + CD

∫ t

0
‖um

ksx(s)‖2ds ≤ K

‖um
t (t)‖2 + ‖um

x (t)‖2 + CD

∫ t

0
‖um

sx(s)‖2ds ≤ K,

for all t ∈ [0, T ], m = 1, . . . . Since these estimates guarantee the pointwise boundedness of
‖um

x ‖ and ‖ux‖ (by the weak lower semicontinuity of norms and the convergence um
x (t) →

ux(t) in H), we can utilize the local Lipschitz property (A3) of σe in BH(0,
√

K) together
with the growth condition (A4) to obtain the following estimate for ∆Em

1

‖∆Em
1 (t)‖ ≤ |G(0, Pk)|L√K‖um

kx(t)− um
x (t)‖+ |G(0, Pk)−G(0, P )|{C1‖um

x (t)‖ + C2}
+|G(t, Pk)|L√K‖um

kx(0)− um
x (0)‖+ |G(t, Pk)−G(t, P )|{C1‖um

x (0)‖+ C2}
+

∫ t

0
[|Ġ(t− s, Pk)|L√K‖um

kx(s)− um
x (s)‖

+|Ġ(t− s, Pk)− Ġ(t− s, P )|{C1‖um
x (s) + C2}]ds.
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Let ∆m
k (t) = um

k (t)− um(t). The a priori estimate yields that there exist positive constants
M1,M2 and M3 such that

‖∆Em
1 (t)‖ ≤ M1‖∆m

kx(t)‖+ M3|G(0, Pk)−G(0, P )|+ M3|G(t, Pk)−G(t, P )|
∫ t

0
[M2‖∆m

kx(s)‖+ M3|Ġ(t− s, Pk)− Ġ(t− s, P )|]ds, (4.6)

where we used the fact that um
kx(0) − um

x (0) = 0. We now return to (4.5), multiply by
am

jkt(t)− am
jt(t) and sum over j to obtain

1

2

d

dt
‖∆m

kt(t)‖2 + CD‖∆m
ktx(t)‖2 + 〈∆Em

1 (t), ∆m
ktx(t)〉 = 0.

We add 〈∆m
kx(t), ∆

m
ktx(t)〉 to both sides, and then using standard inequalities we arrive at

1

2

d

dt

(
‖∆m

kt(t)‖2 + ‖∆m
kx(t)‖2

)
+

CD

2
‖∆m

ktx(t)‖2 ≤ 2

CD

(
‖∆Em

1 (t)‖2 + ‖∆m
kx(t)‖2

)
. (4.7)

Let us introduce the notation

∆G(t, k) = G(t, Pk)−G(t, P )

and
∆Ġ(t, k) = Ġ(t, Pk)− Ġ(t, P ).

By the estimate (4.6) we have

‖∆Em
1 (t)‖2 ≤ M4

{
‖∆m

kx(t)‖2 + |∆G(0, k)|2 + |∆G(t, k)|2 + t
∫ t

0
‖∆m

kx(s)‖2ds

+
∫ t

0
|∆Ġ(t− s, k)|2ds

}
. (4.8)

Next we integrate (4.7) from 0 to t and obtain after using standard methods and the estimate
(4.8) that

‖∆m
kt(t)‖2 + ‖∆m

kx(t)‖2 + CD

∫ t

0
‖∆m

ktx(s)‖2ds ≤ K1

∫ t

0
‖∆m

kx(s)‖2ds + Jk(t), (4.9)

where Jk(t) is given by

Jk(t) =
2M2

CD

∫ t

0
{|∆G(0, k)|2 + |∆G(s, k)|2 +

t2

2
|∆Ġ(t− s, k)|2}ds.

By (4.1)-(4.2) and (4.3)-(4.4) we can assert that

Jk(t) → 0 (4.10)

for t ∈ [0, T ] as k →∞. Application of Gronwall’s lemma in (4.9) yields

‖∆m
kt(t)‖2 + ‖∆m

kx(t)‖2 ≤ Jk(t) + K1

∫ t

0
Jk(s)e

K1(t−s)ds, t ∈ [0, T ]. (4.11)
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By the weak lower semicontinuity of norms, the convergences (R1) and (R3) for a fixed k
and (4.10) we obtain from (4.11) that

ukt(t) → ut(t) in H for each t ∈ [0, T ],

and
ukx(t) → ux(t) in H for each t ∈ [0, T ].

We note that since

‖∆m
k (t)−∆m

k (0)‖ ≤
∫ t

0
‖∆m

kt‖ds

implies

‖∆m
k (t) ≤ ‖∆m

k (0)‖+
∫ t

0
‖∆m

kt‖ds,

which tends to 0 as k →∞, we also have that

uk(t) → u(t) in H for each t ∈ [0, T ].

Additionally, we can show that uktx → utx in L2(0, T ; H) by using the estimate (4.9). Thus
we can conclude that uk → u in L2(0, T ; V ) and ukt → ut in L2(0, T ; V ), which establishes
Theorem 4.2. We note that the proof actually shows that the map P → u(t; P ) is continuous
from P(Q) to V for each t ∈ [0, T ].

5 The inverse problem

Since the final goal of the original investigation was the detection of stenosis in arteries,
in this section we turn to the study of the inverse problem. In particular, we consider
whether it is possible to determine mechanical properties of the tissue (i.e., the distribution
of relaxation times) by measuring shear wave propagation at the surface of the chest wall.
Thus we attempt to estimate P ∈ P(Q), (where P(Q) is the set of all probability density
functions over Q), given, e.g., shear displacement data d̂i, i = 1 . . . , n, by minimizing the
cost functional

J(P ) =
n∑

i=1

|u(ti, R2; P )− d̂i|2 (5.1)

over all P ∈ P(Q). We assume that Q is compact. Our continuous dependence result in
the previous section (i.e., P → u(t; P ) is continuous from P(Q) to V, Q = T , compact)
implies that the map P → J(P ) is continuous from P(Q) to IR. Since the compactness of Q
guarantees that of P(Q), we have that minimizer must exist, i.e., the inverse problem has a
solution. The framework developed in [3] also provides a way to approximate solutions of the
inverse problem that is useful in actual computations. It is shown that an arbitrary element
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of P(Q) can be approximated by a finite linear combination of Dirac measures. To be more
precise, let QM = {qM

j }M
j=1, M = 1, 2, ...,∞, be subsets of Q chosen so that Qd = ∪∞M=1QM

is dense in Q. Next define

PM(Q) = {P ∈ P(Q)|P =
M∑

j=1

pjδqM
j

, qM
j ∈ QM , pj rational,

∑
pj = 1},

where δq is the Dirac measure with atom at q. Then in [3] it is shown that any element of
P(Q) can be approximated arbitrarily closely (in the Prohorov metric) by elements in PM(Q)
for M sufficiently large. That is, ∪∞M=1PM(Q) is dense in P(Q) in the Prohorov metric. In
terms of our problem of shear wave propagation this means that we can approximate with a
model involving a finite number of internal strain variables in the numerical computations.
The results of such an attempt are detailed in Section 6.

However, in some problems it is natural to minimize J(P) over a subset of P(Q) consisting
of only absolutely continuous probability distributions, i.e., those that have ‘continuous’
densities with Prob[a, b] =

∫ b
a f(x)dx. For example, as we mentioned before, Fung argues

against a finite spectrum of relaxation times (which results if one uses an approximation
with finite linear combinations of Dirac measures) and suggests a continuous distribution of
relaxation times. In this context it might be more desirable to minimize J(F ) over some
PF(Q) = {F ∈ P(Q)|F =

∫
f, f ∈ F}, where F is a given set of functions, and this

motivates the development of new theoretical and approximation results. We remark that
a crucial property in the Banks-Bihari [3] framework is that the compactness of Q implies
compactness of the space (P(Q, ρ), where ρ denotes the Prohorov metric. Thus we look for
some type of compactness condition imposed on the set of functions F that leads to the
compactness of PF(Q) in the ρ metric. To this end we prove the following result.

Theorem 5.1 Let F be a weakly compact subset of L2(Q), with Q compact, and let PF(Q)
be the family of probability distribution functions on Q generated by F as a set of densities

PF(Q) = {F ∈ P(Q)|F ′ = f, f ∈ F}.

Then PF(Q)is a ρ compact subset of (P(Q), ρ) where ρ is the Prohorov metric on the set
P(Q) of all probability density functions on Q.

Proof: Let {Fn} ∈ PF(Q), where Fn =
∫

fnds, fn ∈ F . Since weak compactness of F
implies that F is norm bounded we have that {fn} ⊂ F is weakly sequentially compact, i.e.,
there exists an f ∈ F and a subsequence {fnk

} of {fn} such that fnk
⇀ f with ‖fnk

‖L2 ≤ M.
Then for any continuous function g ∈ C(Q) we have

∫

Q
gfnk

dx →
∫

Q
gfdx,

which in turn implies that Fnk
→ F =

∫
fds in the ρ-metric. Thus PF(Q) is sequentially

compact. Next we establish that this set is also closed in the ρ-metric. Let {Fn} ⊂ PF(Q)
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be such that Fn → F ∈ P(Q) in the ρ-metric. We must argue that F ∈ PF(Q). Since
Fn =

∫
fnds, we have that

∫

Q
gfndx →

∫

Q
gdF (5.2)

for every g ∈ C(Q). Since {fn} ⊂ F we can assert as above that there exists {fnk
} and

f ∈ F such that ∫

Q
gfnk

dx →
∫

Q
gfdx

for all g ∈ C(Q), which implies that
∫

Q
hfnk

dx →
∫

Q
hfdx

for every h ∈ L2(Q), since {fnk
} is bounded in L2(Q) and C(Q) is dense in L2(Q). Now by

(5.2) ∫

Q
g̃dF =

∫

Q
g̃fdx for all g̃ ∈ L2(Q),

i.e., F is absolutely continuous with F ′ = f, which implies that F ∈ F . Thus we can conclude
that PF(Q) is compact in (P(Q), ρ).

This result, combined with the continuous dependence statement above, guarantees that the
inverse problem is solvable, i.e., a minimizer of the cost functional J(P ) exists over the set
PF(Q) ⊂ P(Q). We note, that although the previous computational framework utilizing
Dirac measures is valid here, it may be desirable to develop ‘smoother’ approximations to
elements of PF(Q). Namely, suppose that f ∈ F and F ∈ P(Q) with F =

∫
f. Since

F ⊂ L2(Q), we can formulate a piecewise linear spline approximation to f, i.e., let

fN(x) =
N∑

j=0

bN
j `N

j (x),

(where the `j-s are the usual piecewise linear splines) such that fN → f in L2(Q), and the
bN
j -s are rational numbers. This implies that

∫

Q
gfNdx →

∫

Q
gfdx

for all g ∈ L2(Q), hence for all g ∈ C(Q), which yields

ρ(fN , f) → 0.

Let FN = {h ∈ L2(Q)|h(x) =
∑N

j=0 bN
j `N

j (x)}, where the bN
j -s are rational. Thus we can

conclude that the set

P̃(Q) = {F ∈ P(Q)|F =
∫

f, f ∈ ∪∞1 FN} (5.3)

is dense in PF(Q) in the ρ-metric. Hence piecewise linear splines provide an alternative
way to approximate elements of PF(Q) in our computational work. (Recall that elements
of ∪PM(Q), which is a dense subset of P(Q), can also be used to approximate elements in
PF(Q) even though the elements of PM(Q) are not in PF(Q).)
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6 A computational example
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Figure 2: Comparison of the optimized model normalized acceleration with two internal
variables (dashed line) and Verburg acceleration data (solid line)

In this section we present an inverse problem example to illustrate the computational
aspects of the theory developed above. The particular example presented is part of the com-
putational effort reported in [2]. “Data” was simulated using the experimental frequencies
of Verburg [27] for a medium with mechanical properties similar to the lung tissue located
between the heart valves and the chest wall. We shall refer to this as the Verburg data;
details on precisely how this data is generated can be found in [2] but we note it contains
no damping or dissipation. It was used as observations for shear acceleration âi at R2 in
a least squares formulation similar to (5.1). The model chosen was of the form (2.1)-(2.3)
with CD = 0 and σe given by (2.4) with γ = −β = −1.0 taken fixed. In the optimization
problem, the class of measures was restricted to the set

P2(Q) = {P ∈ P(Q)|P (τ) =
1

2
δτ1(τ) +

1

2
δτ2(τ)},

where in this case Q was taken as a Cartesian product of compact intervals of positive τ
values, i.e., Q = [τ−1 , τ+

1 ]× [τ−2 , τ+
2 ]. In the example we also estimated C1, C2 in (2.2) as well

as α in (2.4). Thus the search was carried out over five Euclidean parameters. The best fit
parameters found were C∗

1 = 44.78, C∗
2 = 96.023, τ ∗1 = .000416, τ ∗2 = .0038, α∗ = .24. The
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model simulation with these optimal parameters is compared to the Verburg data in Figure
2 where comparison plots are given in both the time domain and the frequency domain.

We note that one could also use elements of P̃(Q) of (5.3) in place of the elements from
PM(Q) in these problems. While such an approximation would yield a system with a con-
tinuous spectrum of relaxation times, the computational efforts in this class of problems
promises to require somewhat more substantial efforts than use of the elements in PM(Q).
Since the elements in P2(Q) performed quite well with the Verburg data, we did not pursue
piecewise linear spline approximations for these problems. The authors of [2] did consider
certain parameterized nonlinear versions of (2.2), i.e., the 1

τj
εj term is replaced by a parame-

terized nonlinearity g(εint, b) consisting of piecewise linear splines in the internal strain, but
they noted no improved performance over that when using the PM(Q) approximate systems
with the Verburg data. We note here that these nonlinear systems considered in [2], which
can be written

dεint

dt
+ g(εint; b) = C

d

dt
σe(ux(t)),

can also be readily treated by the probabilistic framework developed here. In this case, one
can take measures over the parameters b and C, where εint(t) = εint(t; b, C), instead of over
the parameters τ and C.

7 Concluding remarks

In the above discussions we have presented a theoretical framework based on a probabilistic
multiscale formulation for molecular based hysteresis in tissue-like materials. These efforts
were motivated by and formulated in the context of shear propagation in which reptation for
long strand molecules plays a fundamental role and where the molecular dynamic parameters
vary across populations of molecules in an unknown, probabilistic manner. We developed
an inverse problem approach for measure dependent dynamical systems (in this case, partial
differential equations for shear displacements) by making use of the Prohorov metric topology
on measures. The formulation offers a computationally tractable alternative to the well-
known Fung kernel approach for viscoelastic biomaterials.

While the motivating applications are important in their own right, we are confident
that the underlying ideas have potential for a much wider class of applications. In addition
to the areas mentioned in the Introduction, we feel that such an approach will eventu-
ally prove relevant in diverse areas such as electromagnetic polarization and conductivity
in heterogeneous materials (see [9],[12] and the references cited therein), industrial poly-
meric melts ([16],[17],[18],[24]), as well as in other biological applications [4] (e.g., disease
pathogenesis, epidemiology, ecological migrations, and genomic to system response models-
bioinformatics!). The fact that the theoretical formulation leads readily to both computa-
tionally and theoretically sound approximations significantly enhances the attractiveness of
this approach.
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[8] H.T. Banks, B.G. Fitzpatrick and Y. Zhang, Estimation of distributed individ-
ual rates from aggregate population data, in Differential Equations and Applications to
Biology and to Industry, (M. Martelli, et. al., eds.), World Scientific Press, Singapore,
1996, pp. 13–22.

18



[9] H.T. Banks and N.L. Gibson, Well-posedness in Maxwell systems with distributions
of polarization relaxation parameters, CRSC-TR04-01, NCSU, January, 2004; Applied
Math. Letters, submitted.

[10] H.T. Banks, D.S. Gilliam and V.I. Shubov, Global solvability for damped abstract
nonlinear hyperbolic systems, Differential and Integral Equations, 10 (1997), pp. 309–
332.

[11] H.T. Banks, N.G. Medhin and G.A. Pinter, Multiscale considerations in modeling
of nonlinear elastomers, CRSC-TR03-42, NCSU, October, 2003; J. Comp. Meth. Sci.
and Engr., submitted.

[12] H.T. Banks, N.G. Medhin and G.A. Pinter, Nonlinear reptation in molecular
based hysteresis models for polymers, CRSC-TR03-45, NCSU, December, 2003; Quart.
Appl. Math., submitted.

[13] H.T. Banks and G.A. Pinter, Damping: hysteretic damping and models, CRSC-
TR99-36, NCSU, December, 1999; in Encyclopedia of Vibration ( S.G. Braun, D. Ewins
and S. Rao, eds.), Academic Press, London, 2001, pp. 658-664.

[14] H.T. Banks, H. Tran and S. Wynne, A well-posedness result for a shear wave
propagation model, Intl. Series Num. Math., Vol.143, Birkhauser Verlag, Basel, 2002,
pp. 25–40.

[15] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

[16] G. Bishko, T.C.B. McLeish, O.G. Harlen and R.G. Larson, Theoretical molec-
ular rheology of branched polymers in simple and complex flows: The pom-pom model,
Phys. Rev. Lett., 79 (1997), pp. 2352–2355.

[17] R. Blackwell, O.G. Harlen and T.C.B. McLeish, Theoretical linear and nonlin-
ear rheology of symmetric treelike polymer melts, Macromolecules 34 (2001), pp. 2579–
2596.

[18] R. Blackwell, T.C.B. McLeish and O.G. Harlen, Molecular drag-strain cou-
pling in branched polymer melts, J. Rheology 44 (2000), pp. 121–136.

[19] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for
Science and Technology, Vol.5, Springer-Verlag, New York, 2000.

[20] M. Doi and M. Edwards, The Theory of Polymer Dynamics, Oxford, New York,
1986.

[21] J.D. Ferry, E.R. Fitzgerald, L.D. Grandine and M.L. Williams, Temperature
dependence of dynamic properties of elastomers: relaxation distributions, Ind. Engr.
Chem., 44 (1952), pp. 703–706.

19



[22] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag,
New York, NY, 1993.

[23] A.R. Johnson and R.G. Stacer, Rubber viscoelasticity using the physically con-
strained systems’ stretches as internal variables, Rubber Chemistry Technology, 66
(1993), pp. 567–577.

[24] T.C.B. McLeish and R.G. Larson, Molecular constitutive equations for a class of
branched polymers: The pom-pom polymer, J. Rheology 42 (1998), pp. 81–110.

[25] F. Schwarzl and A.J. Staverman, Higher approximation methods for the relaxation
spectrum from static and dynamic measurements of viscoelastic materials, Appl. Sci.
Res., A4 (1953), pp. 127–141.

[26] D. Ter Haar, A phenomenological theory of viscoelastic behavior, Physica, 16 (1950),
pp. 839–850.

[27] J. Verburg, Transmission of vibrations of the heart to the chestwall, Adv. Cardiovasc.
Phys., 5 (1983), pp. 84–103.

[28] M.L. Williams and J.D. Ferry, Second approximation calculations of mechanical
and electrical relaxation and retardation distributions, J. Poly. Sci., 11 (1953), pp. 169–
175.

[29] J. Wloka, Partial Differential Equations, Cambridge Univ. Press., Cambridge, UK,
1987.

20


